skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mercado-Bettín, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Ecosystem states are often influenced by both concurrent and antecedent environmental drivers. However, the relative importance of antecedent conditions varies within and among ecosystems. Here, we analysed long‐term depth‐profile data from 382 temperate lakes across 10 countries to assess how differential changes in spring versus summer air temperature mediate summer water quality. We found that summer bottom‐water conditions were more associated with spring air temperatures, while surface‐water conditions were more associated with summer air temperatures. The relative influence of spring versus summer air temperature was mediated by lake morphometry, stratification and latitude. Across these lakes, summer air temperatures have increased more rapidly than spring air temperatures, potentially contributing to a growing thermal difference between surface and bottom waters (median = +0.5°C/decade). Consequently, our results demonstrate that predicting the ecological impacts of climate change may require considering spatial differences in ecological memory within ecosystems. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Abstract One of the most important physical characteristics driving lifecycle events in lakes is stratification. Already subtle variations in the timing of stratification onset and break-up (phenology) are known to have major ecological effects, mainly by determining the availability of light, nutrients, carbon and oxygen to organisms. Despite its ecological importance, historic and future global changes in stratification phenology are unknown. Here, we used a lake-climate model ensemble and long-term observational data, to investigate changes in lake stratification phenology across the Northern Hemisphere from 1901 to 2099. Under the high-greenhouse-gas-emission scenario, stratification will begin 22.0 ± 7.0 days earlier and end 11.3 ± 4.7 days later by the end of this century. It is very likely that this 33.3 ± 11.7 day prolongation in stratification will accelerate lake deoxygenation with subsequent effects on nutrient mineralization and phosphorus release from lake sediments. Further misalignment of lifecycle events, with possible irreversible changes for lake ecosystems, is also likely. 
    more » « less